US007757298B2

a2 United States Patent 10) Patent No.: US 7,757,298 B2
Shuster (45) Date of Patent: *Jul. 13, 2010
(54) METHOD AND APPARATUS FOR 5,835,722 A * 11/1998 Bradshaw etal. 709/225
IDENTIFYING AND CHARACTERIZING 5,905,800 A 5/1999 Moskowitz et al.
ERRANT ELECTRONIC FILES 5,978,791 A * 11/1999 Farberetal.ccco........ 707/2
5,983,351 A * 11/1999 wr 726/26
(76) Inventor: Gary Stephen Shuster, 2067 Manzanita 5996,113 A * 11/1999 Kornetal.o....... 714/307
Dr., Oakland, CA (US) 94611
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 1383 days.
FOREIGN PATENT DOCUMENTS
Thi.s patent is subject to a terminal dis- WO WO9825373 5 6/1998
claimer.
(21) Appl. No.: 11/145,125
Continued
(22) Filed: Jun.3,2005 (Continued)
OTHER PUBLICATIONS
(65) Prior Publication Data
Kalker et al, “Music2Share—Copyright-Compliant Music Sharing
US 2005/0228795 A1 Oct. 13, 2005 in P2P Systems”, IEEE, Jun. 2004, p. 961-960 *
Related U.S. Application Data Primary Examiner—Ponnoreay Pich
(63) Continuation of application No. 09/561,751, filed on g:a)rAﬁlf;ney » Agent, or Firm—Knobbe Martens Olson &
Apr. 29, 2000, now Pat. No. 6,922,781. ’
(60) Provisional application No. 60/132,093, filed on Apr. (57) ABSTRACT
30, 1999, provisional application No. 60/142,332,
filed on Jul. 3, 1999, provisional application No.
60/157,195, filed on Sep. 30, 1999. A computer system includes a, server having a memory con-
nected thereto. The server is adapted to be connected to a
(51) Int.ClL network to permit remote storage and retrieval of data files
GO6F 7/04 (2006.01) from the memory. A file identification application is operative
(52) US.ClL .o 726/30; 726/26; 713/165 with the server to identify errant files stored in the memory.
(58) Field of Classification Search 726/22, The file identification application provides the functions of:
726/26,30; 713/189, 165, 188 (1) selecting a file stored in said memory; (2) generating a
See application file for complete search history. unique checksum corresponding to the stored file; (3) com-
paring said unique checksum to each of a plurality of previ-
(56) References Cited

U.S. PATENT DOCUMENTS

4,864,616 A * 9/1989 Pondetal. 713/165
5,519,865 A * 5/1996 Kondoetal. 707/1
5,530,757 A * 6/1996 Krawczykccoeueen. 713/188
5,809,138 A 9/1998 Netiv

5,832,208 A 11/1998 Chen et al.

ously generated checksums, wherein the plurality of previ-
ously generated checksums correspond to known errant files;
and (4) marking the file for deletion from the memory if the
unique checksum matches one of the plurality of previously
generated checksums.

16 Claims, 6 Drawing Sheets

USER COMPUTER
wes |
122 | BROWSER
/! 102
oIsPLY | | 124
=] INTERNET
N
™~
b
112 | ! 132
£ g B SECONDARY -+
WeB HOST .
R Z) P11 | wes HosT
o
IDENTIFICATION -EERVER | M — SR
APPLICATION
o e
110
DATA BASE Ve
130

US 7,757,298 B2

Page 2
U.S. PATENT DOCUMENTS 6,643,696 B2 11/2003 Davis et al.
6,922,781 Bl 7/2005 Shuster

6,081,897 A * 6/2000 Berssoncceeennns 726/32 7,120,274 B2* 10/2006 Kackeretal. 382/100
6,182,081 Bl* 1/2001 Dietl etal. 707/102 2002/0087885 Al* 7/2002 Peledetal. 713/201
6,209,097 B1* 3/2001 Nakayama et al. v 713/193 2005/0108248 Al* 5/2005 Natunen 707/10
6,236,768 Bl1* 5/2001 Rhodesetal. 382/306
6,280,341 B1* 9/2001 Barneycoocoeeren... 707/6 FOREIGN PATENT DOCUMENTS
6,510,513 BL* 1/2003 Danieli w.ocovevevsccvvrn 713/156 WO WO00842098 * 9/1998
6,530,022 B1* 3/2003 Blairetal. 713/186
6,577,920 Bl 6/2003 Hypponen et al. * cited by examiner

U.S. Patent

Jul. 13, 2010

122"

120/

Ve

USER COMPUTER

WEB
BROWSER

DISPLAY

r\

WEB
PAGE

114

WEB HOST /

FILE
IDENTIFICATION
APPLICATION

110

130

Sheet 1 of 6 US 7,757,298 B2
k
! 102
|
{
]
T
NS
il
P 132
Pl |
i 11 1| SECONDARY
| R WEB HOST
T
N LT sevew

DATA BASE

U.S. Patent Jul. 13,2010 Sheet 2 of 6 US 7,757,298 B2

DIRECTORY SCAN
2(<

TRAVERSE DIRECTORY ENTRIES

206

/

YES REPORT PRESENCE
OF SUSPECT FILES

204

SEQUENTIAL
FILES
?

208

TQTAL
SIZE GREATER

THAN THRESHOLD
?

212

FILE

NAME CONTAIN

SUSPECT TAGS
?

YES

214

FILE
REFERENCED IN
ANY HTML

FILE
?

NO

;’8 216
END OF

enD =3¢ pirectory SN0
7

FIG. ZA

U.S. Patent Jul. 13,

2010 Sheet 3 of 6

FILE CONTENT
REVIEW

US 7,757,298 B2

220~

RETRIEVE FILE FROM

DIRECTORY

222

226

228

232

FILE

CONTAINS "\ y£s

COPYRIGHT

NOTICE
?

FILE
CONTENTS
MATCH INDICATED
FILE TYPE

NO

224

e

REPORT PRESENCE
OF SUSPECT FILE

END

230
FILE /
CONTAIN
DATA PAST END TRUNCATE
OF DATA THE FILE
MARKER
END OF “\ g
DIRECTORY
?

U.S. Patent Jul. 13,2010 Sheet 4 of 6 US 7,757,298 B2

CHECKSUM SUSPECT FILE

RETRIEVE FILE FROM SUSPECT FILE LIST

240

242
"N READ INITIAL PORTION OF FILE

244 w
\ GENERATE FIRST CHECKSUM

246
\ COMPARE FIRST CHECKSUM TO TABLE

248 MATCH \NO
?

250 YES
\ READ LARGER PORTION OF FILE

252 ‘
\- GENERATE SECOND CHECKSUM

254
_\ COMPARE SECOND CHECKSUM TO TABLE

258

256

YES ADD FILE TO
DELETION LIST

NO

FIG. 2C

U.S. Patent Jul. 13,2010 Sheet 5 of 6 US 7,757,298 B2

CHECKSUM GENERATION

'l 302
READ BYTE OF FILE /
MULTIPLY BYTE BY 304
RUNNING CHECKSUM

l 306
REVERSE THE RESULT

1

308
TRUNCATE TO FIXED smﬂ/

J10

REACHED
PREDETERMINED
NUMBER OF
BYTES
?

NO

YES

F/G 5 RETURN \312

U.S. Patent Jul. 13,2010 Sheet 6 of 6 US 7,757,298 B2

CHECKSUM LIBRARY

402 |
N\ ToENTIFY SOURCE FILES |

:

404
N\ GENERATE CHECKSUMS

|

STORE CHECKSUM, FILE NAME,
405/ AND FILE LENGTH IN LIBRARY

408 ADD’L ™\ YES

FILES
?

NO

FIG. 4 [Bel~_

US 7,757,298 B2

1

METHOD AND APPARATUS FOR
IDENTIFYING AND CHARACTERIZING
ERRANT ELECTRONIC FILES

RELATED APPLICATIONS

This application is a continuation of application Ser. No.
09/561,751 filed Apr. 29, 2000, now U.S. Pat. No. 6,922,781,
which claims priority pursuant to 35 U.S.C. §119(e) to U.S.
Provisional Application Nos. 60/132,093, filed Apr. 30, 1999;
60/142,332, filed Jul. 3, 1999; and 60/157,195, filed Sep. 30,
1999. All of the foregoing non-provisional and provisional
applications are specifically incorporated by reference
herein, in their entirety.

COPYRIGHT NOTICE

This patent document contains material subject to copy-
right protection. The copyright owner, Ideatlood, Inc., has no
objection to the reproduction of this patent document or any
related materials, as they appear in the files of the Patent and
Trademark Office of the United States or any other country,
but otherwise reserves all rights whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to electronic files stored on
computers, and more particularly, to methods and apparatus
for identifying and characterizing errant electronic files
stored on computer storage devices.

2. Description of Related Art

The use of public and shared computing environments has
proliferated due to the popularity of the Internet. Many Inter-
net service providers (ISP) offer Web hosting services at low
or no cost in which registered users can place their own Web
sites on the ISP’s servers. These individual Web sites allow
users to store and access electronic files that are uploaded to
the servers. As a result of this proliferation, the administration
of the large number of stored electronic files has become an
important aspect of such Web hosting services. In view of the
relative ease of public access to these electronic file storage
resources, there is also widespread abuse of Web server space
in which users upload files that are offensive, illegal, unau-
thorized, or otherwise undesirable and thus wasteful of stor-
age resources. These file types are predominantly of four
types: music, video, software and graphics. Many such files
may contain pornography in violation of the terms of use of
the Web hosting service. Moreover, the copying of these files
to the Web server may be in violation of U.S. copyright laws.
Consequently, the identification and removal of such files
represents a significant administrative burden to the Web
hosting services. In addition, the presence of certain files
(such as depictions of child pornography or copyrighted
music files) on user computers on corporate networks poses
great legal risks to the corporation.

Such files can be selected for review and characterized as
acceptable or unacceptable to the system administrator using
an automated or manual process. Unfortunately, many unde-
sirable files are not easily recognizable and cannot be
detected and characterized. A manual review of the content of
the files stored on the storage resource is usually not economi-
cally feasible, and is also not entirely effective at identifying
undesirable files. Illicit users of Web hosting services have
devised numerous techniques for disguising improper files
wherein even easily recognizable file types are disguised as
less recognizable file types. One such technique for disguis-

20

25

30

35

40

45

50

55

60

65

2

ing files is to split them into parts so that (i) they cannot be
detected by simple searches for large files, and (ii) they can be
downloaded or uploaded in smaller chunks so that if a transfer
is interrupted, the entire download or upload is not lost. The
split files may also be renamed so as to hide their true file type.
For example, a search for oversized music files (*.mp3)
would not turn up a huge file named “song.txt” because it
appears to the system as a text file.

Another technique for hiding files is to append them to files
that legitimately belong on a web server. By way of example,
a Web site may be created called “Jane’s Dog’s Home Page.”
Jane gets ten small pictures of her dog, converts them to a
computer readable format (for example, jpeg) and saves them
on her computer. She then splits stolen, copyrighted software
into ten parts. She appends each part to the end of one of the
jpeg files. She then uploads these to a web server. Upon a
manual review of the web page, the administrator of the site
would not notice that the otherwise innocuous dog pictures
actually contain stolen software, because each of the files
would in fact display a photo of a dog. Thus, even if the files
were reported for manual review by software doing a simple
search for oversized files, the files would be left on the server
because they appear to be legitimate. While these files can
sometimes be identified by name or size alone, these methods
lead to unacceptable numbers of false positives and false
negatives as file sizes and names are changed.

Free and low cost web hosting services typically rely on
advertising revenue to fund their operation. An additional
abuse of these web hosting services is that they can be cir-
cumvented such that the advertisements are not displayed.
Typically, the advertising content is displayed on text or
hypertext pages. If a user stores graphics or other non-text
files on a free web hosting server, yet creates a web page
elsewhere on a different service that references these graphics
or non-text files, the free web hosting service pays the storage
and bandwidth costs for these files without deriving the rev-
enue from advertisement displays.

A need exists, therefore, to provide a method and apparatus
for identifying and characterizing errant electronic files
stored on computer storage devices, that makes use of a
variety of file attributes to reliably characterize files accord-
ing to pre-set criteria, that is not easily circumvented, and that
reduces the amount of manual review necessary to verify
proper operation.

SUMMARY OF THE INVENTION

In accordance with the teachings of the present invention,
a method and apparatus are provided for identifying and
characterizing files electronically stored on a computer stor-
age device. More particularly, an embodiment of the inven-
tion further comprises a computer system that includes a
server having a memory connected thereto. The server is
adapted to be connected to a network to permit remote storage
and retrieval of data files from the memory. A file identifica-
tion application is operative with the server to identify errant
files stored in the memory. The file identification application
provides the functions of: (1) selecting a file stored in said
memory; (2) generating a unique checksum corresponding to
the stored file; (3) comparing said unique checksum to each of
a plurality of previously generated checksums, wherein the
plurality of previously generated checksums correspond to
known errant files; and (4) marking the file for deletion from
the memory if the unique checksum matches one of the plu-
rality of previously generated checksums.

A more complete understanding of the method and appa-
ratus will be afforded to those skilled in the art, as well as a

US 7,757,298 B2

3

realization of additional advantages and objects thereof, by a
consideration of the following detailed description of the
preferred embodiment. Reference will be made to the
appended sheets of drawings that will first be described
briefly.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a wide area network
in which a web host delivers information in the form of web
pages to users;

FIG. 2A is a flow chart illustrating a method of scanning a
file directory to identify suspect files stored in a database in
accordance with an embodiment of the invention;

FIG. 2B is a flow chart illustrating a method of reviewing
file contents to identify suspect files;

FIG. 2C is a flow chart illustrating a method of checksum-
ming the suspect files;

FIG. 3 is a flow chart illustrating a method of generating
checksum values; and

FIG. 4 is a flow chart illustrating a method of generating a
checksum library.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

The present invention satisfies the need for a method and
apparatus for identifying and characterizing errant electronic
files stored on computer storage devices, that makes use of a
variety of file attributes to reliably characterize files accord-
ing to pre-set criteria, that is not easily circumvented, and that
reduces the amount of manual review necessary to verify
proper operation. In the detailed description that follows, like
element numerals are used to describe like elements illus-
trated in one or more of the figures.

Referring first to FIG. 1, a block diagram is illustrated of a
wide area network in which information is delivered to users
in the form of web pages. It is anticipated that the present
system operates with a plurality of computers that are coupled
together on a communications network, such as the Internet
or a wide area network. FI1G. 1 depicts a network that includes
a user computer 120 that communicates with a Web host 110
though communication links that include the Internet 102.
The user computer 120 may be any type of computing device
that allows a user to interactively browse websites, such as a
personal computer (PC) that includes a Web browser appli-
cation 122 executing thereon (e.g., Microsoft Internet
Explorer™ or Netscape Communicator™). The Web host
110 includes a server 112 that can selectively deliver graphi-
cal data files in the form of HyperText Markup Language
(HTML) documents to the user computer 120 using the
HyperText Transport Protocol (HTTP). Currently, HTML 2.0
is the standard used for generating Web documents, though it
should be appreciated that other coding conventions could
also be used within the scope of the present invention. The
server 112 accesses HTML documents stored within a data-
base 116 that can be requested, retrieved and viewed at the
user computer via operation of the Web browser 122. The
database 116 may also contain many other types of files,
including text, graphics, music, and software files. It should
be appreciated that many different user computers may be
communicating with the server 112 at the same time.

As generally known in the art, a user identifies a Web page
that is desired to be viewed at the user computer 120 by
communicating an HTTP request from the browser applica-
tion 122. The HTTP request includes the Uniform Resource
Locator (URL) of the desired Web page, which may corre-

20

25

30

35

40

45

50

55

60

65

4

spond to an HTML document stored on the database 116 of
the Web host 110. The HTTP request is routed to the server
112 via the Internet 102. The server 112 then retrieves the
HTML document identified by the URL, and communicates
the HTML document across the Internet 102 to the browser
application 122. The HTML document may be communi-
cated in the form of plural message packets as defined by
standard protocols, such as the Transport Control Protocol/
Internet Protocol (TCP/IP). A user may also download any
other type of file from the database 116 in the same manner.

FIG. 1 further illustrates a secondary Web host 130 having
a server 132 and database 134 similar to that of the primary
Web host 110. The user computer 120 can communicate with
the secondary Web host 130 in the same manner as described
above. Moreover, the primary Web host 110 can communi-
cate with the secondary Web host 130 in the same manner.
The pertinence of this communication path will become more
clear from the following description of the present method.
The Web host 110 further comprises a file identification appli-
cation 114 that analyzes the data files stored on the database
116 in order to identify errant files in accordance with the
present invention. The file identification application 114 may
comprise a program executing on the same computer as the
server 112, or may be executing on a separate computer. The
file identification application tests various attributes of the
files stored on the database to determine whether they satisfy
a particular profile that corresponds to an errant file. Source
code for a preferred embodiment of a file identification appli-
cation is attached hereto as an exhibit.

A widely accepted characteristic of the Internet is that files
are copied relentlessly and without permission. This is par-
ticularly true of illicit files, such as adult content, porno-
graphic material or illegally copied software, music or graph-
ics. Thus, a photograph showing up on a single Web site may
be propagated to hundreds of other Web sites within days.
Although the file name is often changed, and transmission
errors often result in premature truncation of the file (and thus
a new file length), the initial portion of the file remains iden-
tical as it is propagated throughout the Internet. Another
characteristic of the Internet is that illicit files, such as music,
video and software, all have one common attribute—they are
very large once reassembled. It is therefore necessary to (i)
identify oversized files that have been uploaded in parts, and
(i1) identify “hidden” files that are appended to otherwise
legitimate files. As will be further described below, an aspect
of'the present invention takes advantage of these characteris-
tics of the Internet.

Referring now to FIGS. 2A-2C, a method for identifying
and characterizing files is illustrated in accordance with an
embodiment of the invention. The method would be executed
by the file identification application 114 described above with
respectto FIG. 1. FIG. 2 A illustrates an exemplary method of
scanning a file directory to identify suspect files stored in a
database. Suspect files are ones that are suspected of being
improper, and are marked for further testing. The database
116 includes a directory that identifies the files stored therein
based on various attributes, including file name and file size.
It will be appreciated from the following discussion that the
method of FIGS. 2A-2C relates specifically to the identifica-
tion of pornographic materials in view of the particular selec-
tion criteria that is utilized; however, it will be understood to
persons of ordinary skill in the art that the selection criteria
can be modified to identify other types of illicit files. Starting
at step 202, the application traverses the directory in order to
analyze the numerous directory entries. The application may
construct a relational database of the directory entries in order
to sort on the various fields of the directory. This step may be

US 7,757,298 B2

5

performed repeatedly as a continuing process through this
identifying process, and would have to be repeated periodi-
cally to identify new files that are added to the database 116.

At step 204, the application determines whether there are
any sequentially numbered files within the directory. Sequen-
tial files can be identified by analyzing and comparing the file
names to each other. One attribute of pornographic materials
is that they are often uploaded to a server as part of a series of
photographs. Thus, the file names may include an embedded
numerical designation such as “xxx001jpg” or
“xxx002.jpg”. The user may define at what level of folders the
software will look for sequentially numbered, lettered, or
otherwise identified files. For example, if a file server is
divided into folders lettered from “AA” to “ZZ”, and each
folder contains Web sites with names in which the first two
letters correspond to the name of the file folder, the user could
decide to treat all folders on the server as a single Web site, or
to treat only Web sites within the same folder as a single Web
site, or to treat each Web site individually. In the preferred
embodiment, each Web site is considered on its own without
reference to other Web sites, although the invention need not
be limited in this manner.

If any such sequential files are identified, they are reported
as suspect files at step 206. Then, the application returns to
step 202 and continues traversing through the directory
entries. If no sequential files are identified at step 204, the
application next determines at step 208 whether there are any
files having identical file sizes. Another attribute of stolen
intellectual property materials such as music files is that they
are often broken up into several pieces in order to thwart their
detection by simple searches for large files, and also to enable
them to be downloaded or uploaded in smaller chunks to
facilitate transfer. The presence of two or more files having
identical file size within the, directory is an indicator that they
may be pieces of a single, larger, illicit file. If there are plural
files with identical file sizes, the application determines at
step 210 whether the total size of the identical files summed
together would exceed a predetermined threshold. As noted
above, illicit files tend to be unusually large, so the predeter-
mined threshold would be selected to correspond with the
largest size of a typical non-illicit file. If the total size does
exceed the predetermined threshold, then the identical files
are reported as suspect files at step 206.

More particularly, the application may manipulate the file
names to determine whether they are in fact likely to be parts
of a single, larger file. An alternative way to determine
whether files should be aggregated is to delete all numbers
from the file names. Any files that are identically named after
the elimination of all numbers would be marked as potentially
responsive and their names and aggregate size would be
reported. Of course, this can be limited to numbers in con-
junction with specified letters (such as r00, r41, etc., as the “t”
denotation often indicates file compression and division via
the RAR method). Similarly, this can be limited to specified
file types (whether identified by the file type suffix to the file
name, or by examination of the actual contents of the file) or
files other than specified types (for example, legitimate
graphics files such as *.jpg are often sequentially numbered
and may be a good candidate for exclusion). Next, using the
original list of file names, any files are identified that differ
only by a user-defined number of characters. Such files would
be marked as potentially responsive and their names and
aggregate size would be reported. Both of the foregoing meth-
ods can be set to either ignore the file suffix or file type
information or to utilize it. Next, using the original list of file
names and sizes, files that are of the same size (or within a
user-defined number of bytes of being of the same size) are

20

25

30

35

40

45

50

55

60

65

6

identified. Any such files are marked as potentially responsive
and their names and aggregate size would be reported.

If no identical files are identified at step 208, or if the total
size does not exceed the predetermined threshold at step 210,
the application proceeds to step 212 where it is determined
whether the file names contain any suspect tags. An example
of a suspect tag is “xxx” which is often used in association
with pornographic materials. Another example of a suspect
tag is “crc”, which refers to a cyclical redundancy check
(CRQ), i.e., a known error checking technique used to ensure
the accuracy of transmitting digital data. When a large file has
been broken up into plural smaller files, it is common to
include a CRC file in order verity the accurate reconstruction
of'the large file. The presence of a file having a “crc” tag is an
indicator that an illicit or illegal file has been uploaded to the
server. A table of predetermined suspect tags may be gener-
ated and periodically updated to reflect current usage within
Internet newsgroups, Web sites and other facilities for traf-
ficking in pornographic or illicit materials. If any file names
containing suspect tags are identified, then the associated files
are reported as suspect files at step 206.

If no suspect tags are identified at step 212, the application
proceeds to step 214 where it is determined whether the file is
referenced in any HTML file contained within the directory.
Ideally, the files stored on the database would each be linked
to HTML files contained within the directory. Where a file is
not linked to a local HTML file, this is an indicator that a user
is storing graphics or other non-text files that are linked to a
Web page hosted elsewhere on a different service. As
described above, this situation is undesirable since the free
web hosting service pays the storage and bandwidth costs for
these files without deriving the revenue from advertisement
displays. Accordingly, any file names that are not referenced
in an HTML file contained within the directory are reported as
suspect files at step 206. Alternatively, every file bearing a file
type capable of causing a web browser to generate hypertext
links (i.e. *.htm, * html, * .shtml, etc.) may also be reviewed.
The hypertext links may be then compared against a list of
illegal links (for example, links to adult-content Web sites).
Any file that contains a hypertext link to such a site is reported
as suspect. If all files on the directory are properly referenced
in HTML files or contain no illegal links, the application
determines whether the end of the directory has been reached
at step 216. If the end of the directory is not yet reached, the
application returns to step 202 to continue traversing the
directory and identifying suspect files. Otherwise, this por-
tion of the application ends at step 218.

Once areview of the directory entries is complete, the next
step is to review the content of the files listed on the directory
to see ifadditional files should be added to the suspect file list.
This review may address every file listed on the directory not
already listed on the suspect file list, or may be further nar-
rowed using particular selection criteria specific to the type of
illicitfile, i.e., pornography, copyright infringement, etc. FIG.
2B illustrates an exemplary method of reviewing file con-
tents. At step 220, the application retrieves a file from the
directory. At step 222, the retrieved file is examined to iden-
tify whether the file contains a copyright notice or the symbol
©. The presence of a copyright notice in the file is an indicator
that the file has been uploaded to the server unlawtully, and
likely contains graphics, text, software or other material that
is protected by copyright. Any files containing the copyright
notice would be reported as a suspect file and added to the
suspect file list at step 224. This copyright notice check pro-
cedure can also be used to ensure compliance with appropri-

US 7,757,298 B2

7

ate copyright laws. Alternatively, the file can be simply
marked for deletion. The application then returns to step 220
and retrieves the next file.

If the file does not contain a copyright notice, the applica-
tion passes to step 226, in which the retrieved file is examined
to determine whether the file structure is as expected for a file
of the indicated type. For example, the file type “jpg” should
contain a header structure with the values “255 216 255 224”.
Alternatively, files can be checked to ensure that they actually
contain the type of data described by the file type marker (i.e.,
a file named *jpg should contain a jpg image). If the file does
not match the indicated file type, the file can be reported as a
suspect file and added to the suspect file list at step 224, or
simply marked for deletion. Another alternative approach
would be to replace files containing data of a type different
than that indicated by their file type marker by a file stating
that the original file was corrupted. Yet another approach
would be to retype the file (i.e. *jpg can be retyped to *.zip if
it contained a zipped file and not a jpg). Further, certain file
types can be aggregated. For example, *.gif and *.jpg files
may be aggregated as a single file type, and a file bearing a
* jpg type is considered valid if it contains either a giforajpg
image. This greatly reduces the problem of mistakenly delet-
ing a file that a consumer has innocently misnamed. The
application then returns to step 220 and retrieves the next file.

If the file contents do match the indicated file type, the
application determines at step 228 whether the file contains
data extending past the end of data marker. If this marker
appears before the true end of file, then it is likely that the
additional data following the end of data marker constitutes a
portion of an illicit file. At step 230, the file is truncated at the
end of file marker. The application then returns to step 220
and retrieves the next file. If the file does not contain data past
the end of data marker, the application proceeds to step 232 in
which it is determined whether the end of the directory has
been reached. If there are still additional files in the directory
to review, the application returns to step 220 and retrieves the
next file. If there are no additional files, the file content review
process ends at step 234.

After the files within the directory have been reviewed and
a list of suspect files generated, the next step is to checksum
the suspect files and compare the results against a library of
checksum values corresponding to known illicit files. The
generation of this list of known illicit files will be described
below with respectto FIG. 4. FIG. 2C illustrates an exemplary
method of checksumming the suspect files. A checksum is a
unique number based upon a range or ranges of bytes in a file.
Unlike checksums as they are traditionally used in the com-
puting field, the checksum described herein is not related to
the total number of bytes used to generate the number, thus
reducing a traditional problem with checksums, namely that
similar file lengths are more likely to generate the same
checksum than are dissimilar file lengths. In a preferred
embodiment of the invention, two separate checksums are
generated for a file corresponding to two different length
portions of the file. While it is possible that the first checksum
based on a shorter length portion of the file may falsely match
the checksum of another file, it is highly unlikely that the
second checksum would result in a false match. In addition,
the use of an initial checksum based upon a small amount of
data, reduces the burden on the network and file server. This
reduction is a result of the ability to disqualify a file that does
not match the first checksum without the need to read the
larger amount of data necessary to generate the second check-
sum.

More particularly, at step 240, the application retrieves a
file from the database identified on the suspect file list. Then,

—

5

20

25

30

35

40

45

50

55

60

65

8

at step 242, the application reads a first portion of the suspect
file. In an embodiment of the invention, the first portion
comprises the first one-thousand (1,024) bytes of the file. A
first checksum based on this first portion is generated at step
244. The first checksum is then compared to a library of
known checksum values at step 246, and at step 248 it is
determined whether there is a match between the first check-
sum and the library. This step provides an initial screen of a
file. If there is no match, then the file likely does not corre-
spond to a known illicit file. The file may nevertheless con-
stitute improper or unlawful material, and it may therefore be
advisable to manually review the file to evaluate its contents.
If the file does contain improper or unlawful material, its
checksum may be added to the library of known checksums
and the file marked for deletion from the database. Con-
versely, if the manual review does not reveal the file to be
improper or unlawful, or based simply on the negative result
of'the first checksum comparison, the file is removed from the
suspect file list, and the application returns to step 240 to
retrieve the next file from the suspect file list.

Ifthere is a match based on the initial screen of the file, the
application proceeds to step 250 in which a second portion of
the file is read. In an embodiment of the invention, the second
portion comprises the first ten-thousand (10,240) bytes of the
file. A second checksum based on this second portion is
generated at step 252. The second checksum is then compared
to a library of known checksum values at step 254, and at step
256 it is determined whether there is a match between the
second checksum and the library. This step provides a more
conclusive determination as to whether the file corresponds to
a known improper or unlawful file. If there is a match, the file
is marked for deletion (or other treatment) at step 258, and the
application returns to step 240 to retrieve the next suspect file.
If'there is not a match, the file is removed from the suspect file
list, and the application again returns to step 240 to retrieve
the next suspect file.

The files that are marked for deletion may be listed along
with the pertinent information in a database (either via numer-
ous individual files, an actual database such as SQL Server, or
otherwise). This database may be manually reviewed and files
that should not be deleted removed from the database. A
simple file deletion program may then be run that deletes any
file in the database.

As noted above, the first one-thousand bytes and the first
ten-thousand bytes are used for the two checksums, respec-
tively. For most applications, the use of the entire file or a
larger portion of the file is not necessary and indeed may slow
the process; however, there is no reason why the entire file or
any other subset of the file could not be used. In an alternative
embodiment, the first and last portions of the file are used for
checksumming, although premature file truncation then
becomes a way to defeat the screen. It is also possible to use
other data to improve the quality of the initial screen, such as
the length of the file and the file name. Any file matching the
initial screen criteria is then checked against one or more
checksum tests. Yet another alternative embodiment is to
simultaneously generate both the initial screen checksum and
the confirmation checksum in a single file read, thereby
reducing the number of distinct disk access events. Verifica-
tion is optional when the initial screen is performed using a
checksum, as the checksum denotes a nearly certain match.

In an alternative embodiment of the invention, the present
method for identifying and characterizing files can be used to
block music piracy on the Internet. Each music CD carries
certain identifying data that permits unique identification of
that CD. MP3 encoders can be configured to encode this
information into the first bytes of each MP3 file. As such, the

US 7,757,298 B2

9

MP3 file would carry the signature of the music CD it was
created from. This would permit a scan of all files on a server
for the signature code of a particular CD. When such a code is
found, it can be checked against a database of copyrighted
music and any matches marked for deletion and/or review. An
alternative embodiment would be to prevent MP3 players
from working property unless the unique identifier from a CD
is found, and that unique identifier can be checked for validity
against a checksum or an Internet database.

There are numerous possible algorithnis that may be uti-
lized to generate a checksum, with an exemplary algorithm
shown in FIG. 3. At step 302, a single byte of the file is read.
The byte is then multiplied by the current value of the check-
sum at step 304. On the first pass through the algorithm, a
value of one is used for the current value of the checksum.
Next, at step 306, the result of the previous step is reversed
(e.g., 1234 becomes 4321). At step 308, the result of the
previous step is truncated to a predetermined number of digits
(e.g., with the predetermined number of digits being nine,
1,234,567,890 becomes 123,456,789). At step 310, the algo-
rithnm determines whether the predetermined number of bytes
has been reached. As described above, checksums are per-
formed using the first one-thousand (1,024) and ten-thousand
(10,240) bytes in accordance with a preferred embodiment of
the invention. If the predetermined number of bytes has not
been reached, the algorithm returns to step 302 and continues
with the next byte. Conversely, if the predetermined number
of'bytes has been reached, the algorithm ends at step 312. An
advantage of this algorithm is that the checksum that is gen-
erated is independent of the number of bytes that are utilized.
This way, the likelihood of false matches is substantially
reduced even though the same number of bytes are used to
calculate the checksums.

It should be appreciated to persons having ordinary skill in
the art the many other types of algorithnis could be utilized to
achieve results specific to certain types of files. In an alterna-
tive embodiment of the invention, checksums of graphics files
may be generated based on vector graphics analysis of the
files. The graphics file may be reduced to its vector graphics
components. The resulting vector graphics image is then
reduced to a checksum representing the vector graphics
image. The checksum is then checked against a list of check-
sums generated in a similar matter against known or sus-
pected inappropriate images.

An alternative method of generating a unique checksum for
a graphics file is by dividing an image into quadrants or other
blocks and comparing the relationships between the zones
into which the image is divided. For example, the relative
ratio of red to green, green to blue, and blue to red in each of
the zones may be calculated, and then recorded. A file could
then be altered in a minor way (such as by altering several
bits) without defeating the ability of the software to find the
file.

Referring now to FIG. 4, an exemplary process is illus-
trated for generating the library of checksum values. At step
402, a source of known illicit files is identified. This may be
performed by manually reviewing files already stored on the
database 116 of the Web host 110, such as the files identified
as suspect (see FIGS. 2A-2B). Alternatively, sources of illicit
files outside of the Web host 110 may be sought, such as
located on a secondary Web host 130. Certain Web servers
may be assumed to contain files matching the criteria (i.e., a
Web host that accepts adult content and runs adult oriented
ads over that content will contain nearly entirely adult mate-
rial). Alternatively, a target newsgroup (e.g., alt.binaries.pic-
tures.erotica.female) can provide a source of illicit files. Once
an adequate source of files is identified, checksum values are

20

25

30

35

40

45

50

55

60

65

10

generated at step 404 in the same manner as described above
with respect to FIG. 3. Then, at step 406, the checksum is
stored in a library along with the file name and file length.
Lastly, at step 408, it is determined whether there are other
files associated with the identified source of files that can be
checksummed in order to further enlarge the library. As will
be further described below, the identification of a single
source of illicit material will invariably lead to other sources
of material. Thus, the library can be expanded at an exponen-
tial rate. The process of FIG. 4 is repeated for each new source
ofillicit material. If no additional source files can be located,
the process terminates at step 410.

Once a single file is located matching a predefined criteria
(i.e., adult content), it is almost certain that other files also
matching the same criteria will be found together with or in
proximity to the original matching file (e.g., a Web site having
one pornographic photograph will likely contain others with
it). All files located with the matching file can be automati-
cally checksummed, or can be checksummed after a manual
review. Thus, the library of checksums is expanded. In view
of'the nature and prevalence of illicit material on the Internet,
it is also likely that the matching files will also appear on other
Web sites, and will thus lead to other files meeting the selec-
tion criteria that can themselves be checksummed. The
expansion of the checksum library is thus exponential, and
nearly the entire body of illicit materials on the Internet can be
checksummed in this manner. This checksum amplification
method in the automated checksumming modality can be
further refined by requiring that any given checksummed file
appear together with a minimum number of other check-
summed files on a minimum number of Web sites before the
file represented by the checksum is considered to match the
selection criteria.

It should be appreciated that one cannot defeat the present
invention by simply altering an illicit image file. Although the
alteration of an image file may prevent it from matching an
existing checksum, the altered image will invariably be cop-
ied and posted on a new Web site together with unaltered,
checksummed images, and will be inevitably checksummed
using the foregoing process. Furthermore, the process can be
modified so as to allow automated checksumming with a
greatly reduced risk of the generation of checksums for files
that do not match the selection criteria. One approach is to set
afile size floor and ceiling and/or file type limitation. Another
approach is to create and maintain a list of excluded files,
including all publicly available “clip art” and popular main-
stream advertising banners, as well as files that show up
frequently on legitimate Web sites. Yet another alternative
approach is to require an image to appear in proximity to
known illicit files, such as files that match existing check-
sums, a minimum number of times before being added to the
checksum library.

Furthermore, certain graphics are quite common in certain
types of Web sites. For example, pornographic Web sites
almost always contain a “banner” advertising membership in
a commercial pornography Web site. There is a very limited
universe of such banners. By generating checksums for all
available pornographic banners, it is possible to locate nearly
all pornographic web sites. Using the checksum amplification
method described above, these advertising banner checksums
would quickly lead to a very comprehensive catalog of por-
nographic material checksums. Similarly, illegally copied
software sites often have “warez” banners. Other target file
types have banners and common graphics associated with
them as well.

Files matching the selection criteria can also be located by
searching for hyperlinks to checksummed files or to sites

US 7,757,298 B2

11

known to contain inappropriate material. Thus, whenever a
checksum is matched, the URL of the material located is
recorded. Any HTML page that links to that material is then
identified as likely containing material matching the selection
criteria. All other graphics referenced by that HTML page
and/or in the same Web site may then be automatically check-
summed or flagged for manual review and checksumming.

Certain key words may also be searched for on a Web site.
Thus, for example, the word “fuck” in close association with
“lolita” should flag a site as likely to contain child pornogra-
phy. This method is better used in conjunction with a manual
review so as to avoid checksumming files that do not match
the selection criteria, although it can also be used as an
enhancement to the checksum amplification method to con-
firm that checksums should be automatically generated.

The results of these searches can be returned in a regular
text file. Alternatively, the results may be returned in a for-
matted HTML file that interconnects with the file manage-
ment system. The HTML file should display a copy of all files
on a given Web site matching the checksum(s), all user infor-
mation as well as other sites using the same password, with
the same user name, with the same IP address, or the same
e-mail address, and the options to delete the site(s), modify
the records, delete the materials, etc. Furthermore, for those
file types that cannot be graphically displayed by a Web
browser, the “server” modality (see code attached as Exhibit)
should be used to return a “file present” or “file absent”
graphic to indicate whether the file is present or absent.

In an alternative embodiment of the invention, the present
method for identifying and characterizing files may be imple-
mented in a real-time manner to review files as they are
uploaded to the Web server. In yet another embodiment of the
invention, the present method for identifying and character-
izing files may be used to check the contents of desktop
computers within a business. Thus, for example, with file and
access permissions set correctly, the software could deter-
mine whether pornography, child pornography, copyrighted
software, or other problematic materials exist on the comput-
ers used by employees. Appropriate reporting could then be
accomplished. This can also be accomplished by running the
software in a standalone package on desktop computers (by
parents, for example). For file systems that require locally
running software, the software can also be combined with
necessary software (for example, the detection software
could also serve as the e-mail program for the user, or as the
mechanism whereby the user logs into their main server).

Animportant advantage of the use of checksums to identify
and characterize illicit files is that the customer service
employees of a Web hosting company can determine with
certainty that a file contains illegal contents without actually
viewing the file. This is particularly important in retaining
employees, as many individuals can become uncomfortable
ordisturbed by having to view illicit, violent or illegal images.
For example, by having a library of child pornography check-
sums, the computer can simply report “child porn found”, and
no employee need ever see the image. The customer service
employees can then load the illegal file onto a disk to deliver
to law enforcement, and terminate the customer account.
Another advantage of using the checksums is that it elimi-
nates the need for the Web hosting company to maintain
copies ofillegal or contraband files in order to verify that files
match them. Thus, it is unnecessary to keep a copy of an
illegal picture or stolen music file in order to check whether
files found on the server match the illicit files.

Lastly, the present method for identifying and characteriz-
ing files could be used to provide automatic notification to
Web host customers and other interested parties. Any time a

20

30

35

40

45

50

55

60

65

12

file is reported as illegal, a database containing a list of cus-
tomer data may be accessed to obtain the e-mail address of the
site operator. An automated e-mail message may be generated
(optionally copied to the Web hosting company’s staff) indi-
cating that the site has been marked for review and/or dele-
tion. Alternatively, the fax number of the customer may be
accessed and the same message sent via fax. Alternatively, the
phone number may be accessed and a text-to-voice system
used to send an automated telephone message. Alternatively,
postal mail may be printed with the customer’s address and
the same message.

Having thus described a preferred embodiment of a
method and apparatus for identifying and characterizing
errant electronic files, it should be apparent to those skilled in
the art that certain advantages have been achieved. It should
also be appreciated that various modifications, adaptations,
and alternative embodiments thereof may be made within the
scope and spirit of the present invention. The invention is
further defined by the following claims.

What is claimed is:

1. A computer-implemented method for identifying and
characterizing stored electronic files, said method compris-
ing:

under control of one or more configured computer systems:

selecting a file from a plurality of files stored in a computer

storage medium, wherein selecting the file is performed
according to at least one of:
selecting the file based on the size of the file by deter-
mining whether an aggregate size of plural identi-
cally-sized files exceeds a predetermined threshold;
selecting the file based on whether content of the file
matches a file type indicated by a name of the file; or
selecting the file based on whether the file comprises
data beyond an end of data marker for the file;
generating an identification value associated with the
selected file, wherein the identification value is repre-
sentative of at least a portion of the content of the
selected file;
comparing the generated identification value to one or
more identification values associated with one or more
of a plurality of unauthorized files; and

characterizing the file as an unauthorized file if the identi-

fication value matches one of the plurality of identifica-
tion values associated with the unauthorized files.

2. The computer-implemented method of claim 1, further
comprising selecting the file from one of a plurality of
sequentially-ordered files in a directory of the computer stor-
age medium.

3. The computer-implemented method of claim 1, wherein
generating an identification value comprises generating a
checksum.

4. The computer-implemented method of claim 3,
wherein-generating an identification value comprises gener-
ating a first checksum corresponding to a first portion of said
stored file and a second checksum corresponding to a second
portion of said stored file.

5. The computer-implemented method of claim 3, wherein
generating an identification value comprises generating a first
checksum corresponding to a first portion of said stored file
and a second checksum corresponding to a larger portion of
said stored file that includes the first portion.

6. The computer-implemented method of claim 1, further
comprising processing a plurality of known unauthorized
files to generate the plurality of identification values.

7. The computer-implemented method of claim 1, further
comprising presenting the identified unauthorized file for
human review prior to disposing of it.

US 7,757,298 B2

13

8. The computer-implemented method of claim 1, further
comprising automatically notifying a third party that the file
has been identified.
9. The computer-implemented method of claim 1, further
comprising deleting the identified unauthorized file from the
computer storage medium.
10. A computer system, comprising:
a server having a memory connected, thereto, said server
being adapted to be connected to a network to permit
remote storage and retrieval of data files from the
memory; and
a file identification application operative with the server to
identify unauthorized files stored in the memory, the file
identification application providing the functions of:
selecting a file from a plurality of files stored in the
memory, wherein selecting the file is performed
according to at least one of:

selecting the file by determining whether an aggregate
size of plural identically-sized files exceeds a prede-
termined threshold;

selecting the file based on whether content of the file
matches a file type indicated by a name of the file; or

selecting the file based on whether the file comprises
data beyond an end of data marker for the file;

generating an identification value associated with the
selected file, wherein the identification value is rep-
resentative of at least a portion of the content of the
selected file;

comparing the generated identification value to one or
more identification values associated with one or
more of a plurality of unauthorized files; and

characterizing the file as an unauthorized file if the iden-
tification value matches one of the plurality of iden-
tification values associated with the unauthorized
files.

11. The system of claim 10, wherein the application further
comprises the function of selecting the file from one of a
plurality of sequentially-ordered files in a directory of the
computer storage medium.

20

25

30

35

14

12. The system of claim 10, wherein the application further
comprises the function of selecting the file from a plurality of
files stored in the computer storage medium, based on size of
the file.

13. The system of claim 10, wherein generating an identi-
fication value comprises generating a checksum.

14. The system of claim 13, wherein generating an identi-
fication value comprises generating a checksum correspond-
ing to a first portion of the selected file and a second checksum
corresponding to a second portion of the selected file.

15. The system of claim 13, wherein generating an identi-
fication value comprises generating a first checksum corre-
sponding to a first portion of the selected file and a second
checksum corresponding to a larger portion of the selected
file that includes the first portion.

16. A non-transitory computer-readable storage medium
having instructions stored thereon that, in response to execu-
tion by a computing device, cause the computing device to
perform a operations comprising:

selecting a file from a plurality of files stored in a computer
storage medium, wherein selecting the file is performed
according to at least one of:
selecting the file based on the size of the file by deter-
mining whether an aggregate size of plural identi-
cally-sized files exceeds a predetermined threshold;

selecting the file based on whether content of the file
matches a file type indicated by a name of the file; or
selecting the file based upon whether the file comprises
data beyond an end of data marker for the file;
categorizing the selected file as an unauthorized file based
on a comparison of an identification value associated
with the selected file with one or more identification
values associated with one or more of a plurality of
unauthorized files.

